

Co-funded by the Erasmus+ Programme of the European Union

Developing Energy Efficient and Smart Lighting Education in Vietnam & Myanmar (DESL)

Introduction of DESL project and its outputs

October 24, 2023 Thu Dau Mot city, Vietnam

ERASMUS+ KEY ACTION 2: Cooperation for innovation and the exchange of good practices

Through this Key Action EU aims to

- Support modernisation, accessibility and internationalisation of higher education institutions in Partner Countries around the world
- Support the partner countries to address challenges facing their higher education systems
- Programme countries partners not only contribute to technology transfer, training and capacity building but also learn from partnership and each other's practices

Results and outputs are intended for partner countries

Key Action 2: Capacity Building in the field of higher education

Grant agreement number: 2019-1993/001-001 Duration 15 Nov 2019 – 14 Nov 2023

Motivation

- Electricity demand is higher than supply in developing countries/ many places are unelectrified (Myanmar 65%)
- Lighting is major consumer of electricity in developing countries (35% of electricity in Vietnam), much higher in Myanmar
- Application of energy efficient lighting systems and practices not only reduces electricity demand but also reduces CO2 emissions

Barriers of Energy Efficient Lighting in Developing Countries

- Informatin Barriers: Lack of awareness and information on energy efficient lighting among professionals, public
- Ragulatory Barriers: lack of government interest, insufficient enforcement of policies, need for more qualified personnel
- Technology Barriers: lack of adequately equipped and staffed independent test labs, limited experience of energy efficiency testing amongst engineers
- Environmental and health risk perception Barriers: concerns about quality of light, concerns about environmental impacts of electronic components used

Barriers of Energy Efficient Lighting in Developing Countries

- Partner countries lack technical knowledge and expertise
 - Research and development
 - Lighting Design and application
 - Quality control

 Shortage and need of well-trained human resources for the lighting industry in Vietnam

DESL Objectives

- Raise the awareness in efficient and smart lighting
- Modernization of smart lighting curriculum and laboratory infrastructure
- Enhance and upgrade the skills and competences of teaching staff
- Strengthen the cooperation between university, industry, public sectors and society for the promotion of energy efficient and smart lighting

Awareness raising and need assessment

- Seminar with stakeholders
- Dissemination through local media
- Survey using questionnaires (260 participants)
- Need assessment reports

Development of lighting courses

- Development of 12 new courses and modernization of 13 other courses
- Inclusion of new courses in the existing BSc program

<text>

Co-funded by the Erasmus+ Programme of the European Union Website: www.vgu.edu.vn

Development of lighting courses

HCMUT				
Course	Α			
Name	Lighting Technology		LECTURE	EXERCISES
Required #hours			30	30
Modules	M1.2.1	Advanced photometry	2	NA
	M1.3	Colorimetry	2,5	4
	M1.3.1	Advanced colorimetry	2,5	NA
	M1.4	Optic characteristics of materials (absorptance, transmittance, reflectance)	2,5	1
	M2.2	Thermal radiators	1	4
	M2.5	Electrolumenescence (Basics of LED lamps)	3	2
	M2.5.2	LED luminaires and LED ballasts and drivers	3	2
	M3.3	Lighting design through simulations	2	2
	M3.4	Light and architecture	3	2
	M3.5	Daylight applications	3	4
	M3.6	Prevention of design/projection errors	2	NA
	M3.7	Lighting design considerations (advanced lighting design)	4	NA
	M4.1	Introduction to simulation Software	4	10
	M4.2	Calculations interior lighting (how do simulations work?)	3	8
	M4.3	Calculations exterior lighting	2	8
	M8.4	Office lighting	3	2
	M8.9	Road and street lighting	3	4
			LECTURE	EXERCISES
#hours filled			45,5	53

Development of Lighting Labs

Teacher training and course testing

Course running and evaluations

- First run of courses attracted more than 150 students
- Second run currently underway (more students than in first round)
- Course evaluation for improvement

Course running and evaluations

TDMU: Lighting Engineering – 4,61 TDMU: Lighting Design – 4,70 VGU: Illumination Engineering – 4,08 VGU: Lighting Design and Application – 4,04 VGU: Energy Efficient Smart Lighting – 3,82 HCMUT: A Lighting Technology – 4,46 HCMUT: B Light and Experience – 4,75 HCMUT: C Smart Lighting - 4,56 EIU: Lighting Engineering – 4,80

Maximum score 5

Outreach activities

- Industrial visits and traineeships
- Dissemination seminars/workshops
- Guest lectures from industry
- Organization of universityindustry linkage seminars
- Signing of MOUs with industry/public organizations

Overall outcomes

- Improved access to education and research in the field of smart lighting
- Improved teaching and research capacities of partner universities
- Improved quality of education and research in the field of smart lighting
- Enhanced linkage and cooperation between HEIs, Industry, public bodies and society

